Abbildungssammlung

Liebe Leser, mit diesem Dokument stellen wir Ihnen mit Zustimmung des Verlages die Abbildungen aus unserem Buch Wissensverarbeitung - Eine Einführung in die Künstliche Intelligenz für Informatiker und Ingenieure zur Verfügung.

Sie können die Abbildungen frei verwenden, bspw. für Folien und Präsentationen, wenn Sie bei der Verwendung auf das Buch hinweisen. Alle Grafiken sind Vektorgrafiken, so dass sie beliebig skaliert aus der PDF-Datei kopiert werden können.

Brandenburg an der Havel, im Februar 2011 Ingo Boersch Jochen Heinsohn Rolf Socher

Quellenverweis: I. **Boersch**, J. **Heinsohn**, R. **Socher**. Wissensverarbeitung: Eine Einführung in die Künstliche Intelligenz für Informatiker und Ingenieure. 2. ed., Spektrum Akademischer Verlag, 2007.

Abbildungsverzeichnis

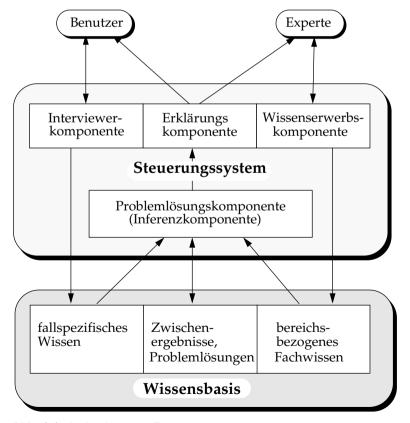
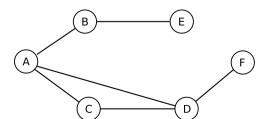
1.1	Architektur von Expertensystemen	1
2.1	Das Wegeproblem: Suche nach einem Weg von A nach F	3
2.2	Transformation des Graphen aus Abbildung 2.1 in einen Baum	4
2.3	Teil des Suchbaums für das Weinkrügeproblem	4
2.4	Suchbaum mit Startknoten A und Zielknoten G	4
2.5	Verlauf der Tiefensuche	4
2.6	Verlauf der Breitensuche	5
2.7	Tiefensuche terminiert nicht	5
2.8	Agenda für Tiefensuche (links) und Breitensuche (rechts)	5
2.9	Die Luftlinienheuristik führt in die Irre	5
2.10	Das Schiebepuzzle	5
2.11	Vergleich der Bewertungen h_1 und h_2 für das Schiebepuzzle	6
2.12	Unfaire (links) und faire (rechts) heuristische Funktion	6
2.13	Landkarte mit Streckenangaben (links) und entsprechender Suchbaum mit	
	Knotenmarkierungen (rechts)	6
3.1	Das Färbeproblem	7
3.2	Eine Lösung des Vier-Damen-Problems	8
3.3	Kantenmarkierungsproblem	8
3.4	Suchbaum für das Problem $x + z = 4, y + w = 4 \dots$	8
3.5	Suchbaum für das Problem $x + z = 4, y + w = 4 \dots$	8
3.6	Constraintnetze für das Färbeproblem und für das Problem aus Beispiel 3.3	9
3.7	Mögliche Nachfolgestellungen der Stellung $s_0 \dots \dots \dots$	9
3.8	Constraintnetz und zwei verschiedene Suchbäume für das Problem $x \neq y$,	
	$x \neq z$	9
3.9	Suchbaum für das Problem $x > y, y > z, z > w$	10
3.10	Ablauf der Propagierung von Beschränkungen	10
3.11	Kombination von Tiefensuche und Constraintpropagierung	11
4.1	Schnellkäfer	13
4.2	Ablauf eines Evolutionären Algorithmus	14
4.3	Fitnessarten	14
4.4	Wachsende Tische	14
4.5	Selektionsvarianten	14
4.6	Fitnesslandschaften	15
4.7	Simpler Genetischer Algorithmus	15

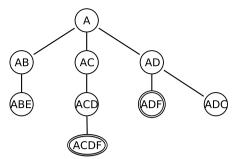
4.8	Crossover-Varianten	15
4.9	Evolution künstlicher Gesichter	15
4.10	Repräsentationen von Programmen	15
4.11	Initialisierung von Baumstrukturen	16
4.12	Crossover symbolischer Ausdrücke	16
5.1	Die Klötzchenwelt	17
5.2	SLD-Resolution	18
5.3	SLD-Resolution mit Antwortsubstitution	18
6.1	Grafische Darstellung eines Regelsystems	19
6.2	Allgemeines Schema der Rückwärtsverkettung	20
6.3	Regelkonflikt bei der Rückwärtsverkettung	20
6.4	Regelsystem mit heuristischer Regel	20
6.5	Allgemeines Schema der Vorwärtsverkettung	20
6.6	Verschiedene Möglichkeiten beim Chipsspiel	21
6.7	Einfaches Schema der Vorwärtsverkettung	21
6.8	Verlauf der Constraintpropagierung bei der Bildung der Konfliktmenge	22
6.9	Struktur eines Vorwärtsinterpreters mit Konfliktlösung	23
7.1 7.2	Revision von Schlussfolgerungen	25
	tung	26
7.3	Regelsystem zu Beispiel 7.1	26
7.4	Regelsystem zu Beispiel 7.1 nach Zurückziehen des Faktums b	26
7.5	Regelsystem zu Beispiel 7.1 nach Zurückziehen des Faktums c	26
7.6	Rechtfertigungsnetz mit zirkulärer Rechtfertigung	27
7.7	Rechtfertigungsnetz zu Beispiel 7.2 mit zwei konsistenten Markierungen	27
7.8	Rechtfertigungsnetz zu Beispiel 7.2 ohne konsistente Markierungen	27
7.9	Rechtfertigungsnetz zu Beispiel 7.3	27
7.10	Transformiertes Rechtfertigungsnetz zu Beispiel 7.3	27
7.11	Regelnetz zum Terminplanungsproblem	28
8.1	Die Regel der totalen Wahrscheinlichkeit	29
8.2	Grafische Darstellung der Regelbasis	30
8.3	Der sich aus der Regelbasis ergebende Und-Oder-Kombinationsgraph	30
8.4	Das Bayessche Netz zu Beispiel 8.12	30
8.5	Divergierend (a), kaskadierend (b) und konvergierend (c) gerichtete Kanten	30
8.6	Lokale Daten (a) und Datenpartitionierung (b) in einem Bayesschen Netz	31
8.7	Datenfluss in einem Bayesschen Netz	31

8.8	Kleingartner: Bewertung der Ereignisse nach der Initialisierung	32
8.9	Kleingärtner: Bewertung der Ereignisse nach einer konkreten Beobachtung .	32
8.10	Krankheitsbild von Apfelbäumen – Zustand nach Initialisierung	32
8.11	Krankheitsbild von Apfelbäumen – Endzustand	33
8.12	Sensor- und Ereignismenge in Dempsters Modell	33
8.13	Hierarchische Anordnung der interessanten Ereignisse	33
9.1	Die Zugehörigkeitsfunktion des Begriffs "groß"	35
9.2	Das inverse Pendel	36
9.3	Architektur eines Fuzzy-Reglers	36
9.4	Die Fuzzy-Mengen für das Beispiel des inversen Pendels	36
9.5	Berechnungen des Fuzzy-Reglers für das Beispiel des inversen Pendels	37
10.1	Lernzyklus mit Feedback	39
10.2	Die drei gegebenen Bildklassen L, M und R	40
10.3	Agent und Umwelt beim bestärkenden Lernen	40
10.4	Unüberwachtes Lernen: Ähnliche Symbole sind zu gruppieren	40
10.5	Unüberwachtes Lernen – eine Lösung für Beispiel 10.4	40
10.6	Aufbau einer Nervenzelle	41
10.7	Neuronen im Kontakt zur Umwelt	41
10.8	Neuronenmodell: Neuron j	41
10.9	Aktivierungsfunktionen	41
10.10	Netztopologien	42
	Das Perzeptron, vereinfachte Darstellung	42
	Äquivalente Darstellungen eines UND-Perzeptrons	42
10.13	UND-Perzeptron: Wahrheitstafel und Trenngerade im Eingaberaum	42
10.14	Paritätsprädikate, z. B. XOR, sind nicht linear separierbar	43
10.15	XOR aus drei Perzeptrons und Menge der 1-Punkte	43
10.16	Logistische Funktion und Ableitung – Lernfreudigkeit der Neuronen	43
10.17	Backpropagation-Lernalgorithmus	44
10.18	Probleme des Gradientenabstiegs	44
	Einfluss der Lernrate auf den Verlauf des Trainingsfehlers	44
10.20	Abhängigkeit des erreichbaren Fehlers von der Netzgröße	45
10.21	Transformation numerischer Attribute	45
10.22	Kodierung des ersten Bildes als Trainingsvektor	45
10.23	Overfitting	45
10.24	letters – ein trainiertes Beispiel-Netz aus SNNS	46
10.25	Eine auffällige Wichtungskonstellation im trainierten Netz	46
10.26	Penfield-Männchen	46
10.27	Dynamik der rezeptorischen Felder	47

10.28	Verteilung der Erregungszentren	47
10.29	Aufbau eines Kohonennetzes und Topologien	47
10.30	Lernvorgang in einer SOM	48
10.31	Nachbarschaftsfunktionen	48
10.32	Wirkung strategischer und numerischer Parameter – Kupferschmied	49
10.33	Musterunabhängige Visualisierungen	49
10.34	Karte im Eingaberaum für verschiedene Dimensionen	50
10.35	Musterabhängige Visualisierungen	50
10.36	Weitere SOM-Visualisierungen	50
11.1	Das temporale Constraintnetz für das Hausbau-Beispiel 11.2	51
11.2	Ein Beispiel zur Unvollständigkeit der Pfadkonsistenzmethode	52
11.3	Partielle Ordnung der Basisrelationen beim Nökel-Verband	52
12.1	Zwei mögliche Situationen in der Klötzchenwelt	53
12.2	Der vollständige Zustandsraum der aus drei Klötzchen bestehenden Klötz-	
	chenwelt	54
12.3	In diesen drei Situationen gilt $On(B, A)$	54
12.4	Die Gesamtmenge aller Aktionen in unserer Klötzchenwelt	55
12.5	Ausführen und Planen einer Aktionssequenz	55
12.6	Von S_0 nach G als Aufgabe für den STRIPS-Planer	55
12.7	Suchbaum für das Problem aus Abbildung 12.6	56
12.8	Dekomposition von Aktionssequenzen	56
12.9	Die Sussman-Anomalie	56

1 Einführung


Abb. 1.1: Architektur von Expertensystemen

2 Suchverfahren

 $\mbox{\bf Abb. 2.1:} \ \mbox{Das Wegeproblem: Suche nach einem Weg von } A \ \mbox{nach } F$

4 2 Suchverfahren

Abb. 2.2: Transformation des Graphen aus Abbildung 2.1 in einen Baum

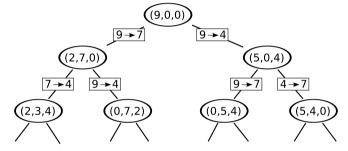
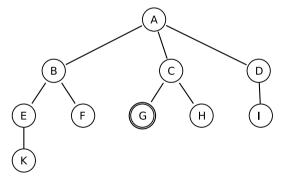



Abb. 2.3: Teil des Suchbaums für das Weinkrügeproblem

 $\begin{tabular}{lll} \bf Abb. & \bf 2.4: & \bf Suchbaum & mit & \bf Startknoten & A \\ & {\bf und } & \bf Zielknoten & G \\ \end{tabular}$

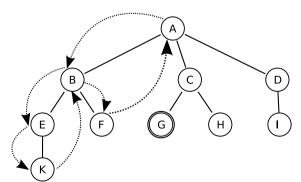
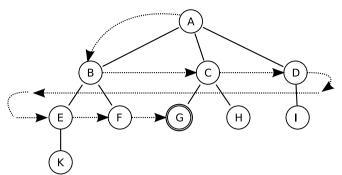



Abb. 2.5: Verlauf der Tiefensuche

Abb. 2.6: Verlauf der Breitensuche

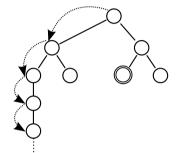
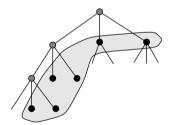



Abb. 2.7: Tiefensuche terminiert nicht

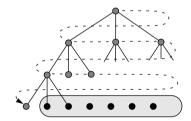
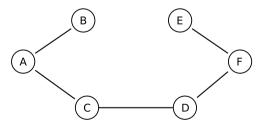
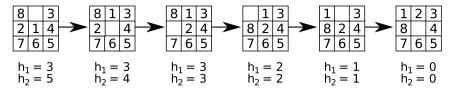



Abb. 2.8: Agenda für Tiefensuche (links) und Breitensuche (rechts)

Abb. 2.9: Gesucht ist ein Weg von A nach E. Die Luftlinienheuristik führt in die Irre. Nur der Umweg über C führt zum Ziel.


5	4		
6	1	8	
7	3	2	

1	2	3
8		4
7	6	5

Startzustand

Zielzustand Abb. 2.10: Das Schiebepuzzle

6 2 Suchverfahren

Abb. 2.11: Vergleich der Bewertungen h_1 und h_2 für das Schiebepuzzle

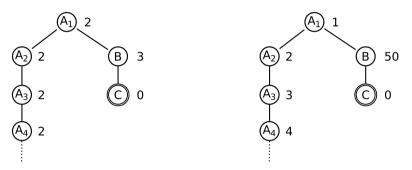
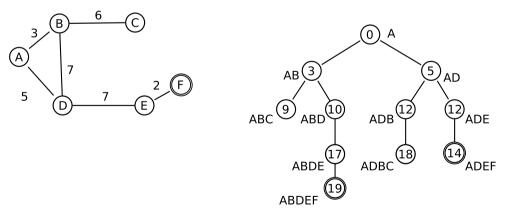



Abb. 2.12: Unfaire (links) und faire (rechts) heuristische Funktion

Abb. 2.13: Landkarte mit Streckenangaben (links) und entsprechender Suchbaum mit Knotenmarkierungen (rechts)

3 Constraints – Propagierung von Beschränkungen

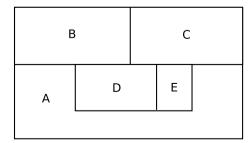
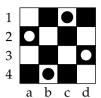
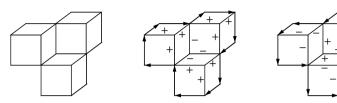
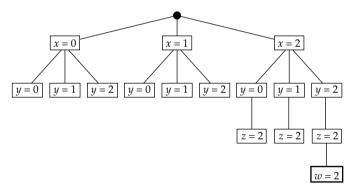


Abb. 3.1: Das Färbeproblem

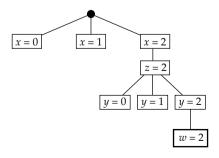

Abb. 3.2: Eine Lösung des Vier-Damen-Problems

Abb. 3.3: Kantenmarkierungsproblem. Außenkanten sind mit \rightarrow , konvexe Innenkanten mit +, konkave Innenkanten mit - markiert.

Abb. 3.4: Suchbaum für das Problem x+z=4, y+w=4. Variablen werden in der Reihenfolge x,y,z,w belegt.

Abb. 3.5: Suchbaum für das Problem x+z=4,y+w=4. Variablen werden in der Reihenfolge x,z,y,w belegt.

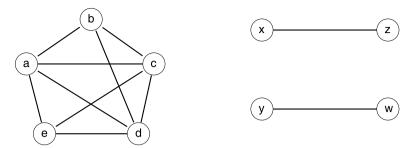


Abb. 3.6: Constraintnetze für das Färbeproblem und für das Problem aus Beispiel 3.3

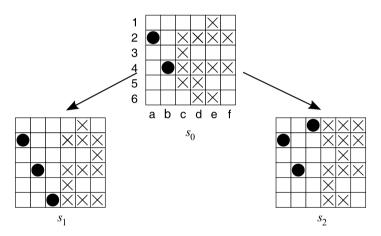
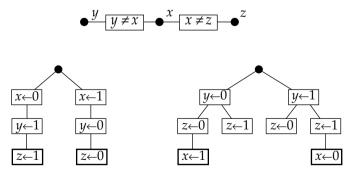
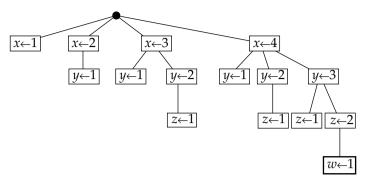




Abb. 3.7: Mögliche Nachfolgestellungen der Stellung s_0 . Bedrohte Felder sind markiert.

Abb. 3.8: Constraintnetz und zwei verschiedene Suchbäume für das Problem $x \neq y, x \neq z$ aus Beispiel 3.4, mit verschiedenen Variablenreihenfolgen

Abb. 3.9: Suchbaum für das Problem $x>y,\ y>z,\ z>w$

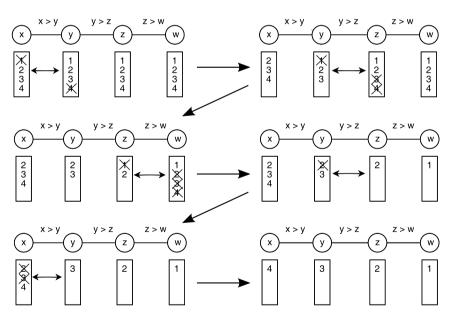
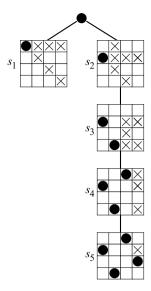
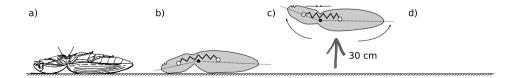




Abb. 3.10: Ablauf der Propagierung von Beschränkungen

 ${\bf Abb.~3.11:}~{\sf Kombination~von~Tiefensuche~und~Constraintpropagierung~beim~Vier-Damen-Problem}$

4 Evolutionäre Algorithmen

Abb. 4.1: Schnellkäfer a) Insekt b) auf dem Rücken: Katapultmuskel gespannt, Bewegung blockiert c) Spreizbolzen gibt Muskel frei, Käfer schnellt in die Luft d) Käfer sucht das Weite, nach (Greguss 76)

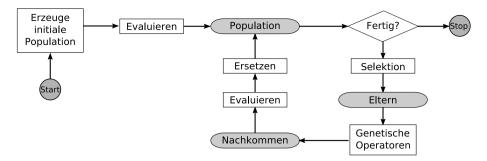


Abb. 4.2: Ablauf eines Evolutionären Algorithmus

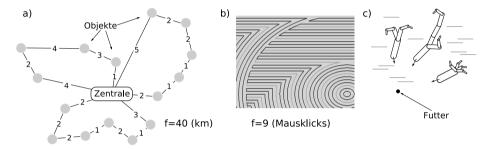


Abb. 4.3: Fitness aus Beispiel 4.1 a) berechenbar b) interaktiv c) implizit

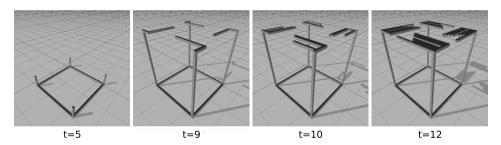


Abb. 4.4: Wachsende Tische aus (Hornby & Pollack 01)

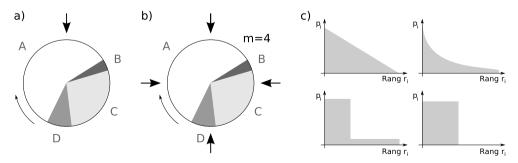
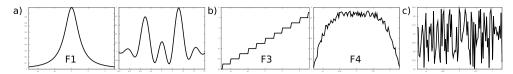



Abb. 4.5: Selektionsvarianten a) Roulette b) Stochastic Universal Sampling c) Rangbasiert

Abb. 4.6: Fitnesslandschaft a) einfach für EA und Bergsteigerverfahren b) wenig Rauschen, kleine Plateaus – noch geeignet für EA c) zufällig – EA-Annahme verletzt

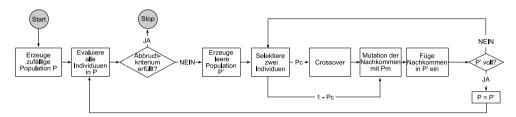


Abb. 4.7: Simpler Genetischer Algorithmus

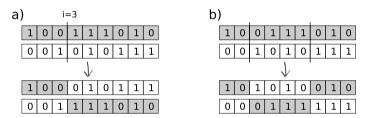
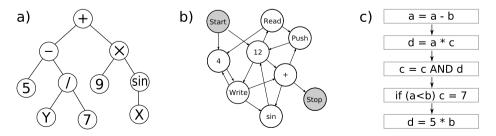



Abb. 4.8: Crossover-Varianten a) 1-Punkt-Crossover b) 2-Punkt-Crossover

Abb. 4.9: Evolution künstlicher Gesichter aus (Frowd & Hancock 07) a) Eltern b) Nachkommen nach Crossover c) Nachkommen nach Crossover und Mutation

 $\begin{tabular}{lll} \textbf{Abb. 4.10:} & Repr\"{a}sentationen von Programmen a) Symbolischer Ausdruck b) Zustandsgraph c) Befehlssequenz \\ \end{tabular}$

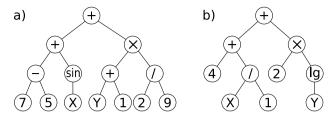


Abb. 4.11: Baumstrukturen der Tiefe 4 konstruiert mit a) FULL-Methode b) GROW-Methode

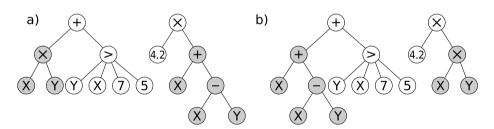


Abb. 4.12: Crossover symbolischer Ausdrücke a) Eltern b) Nachkommen

5 Wissensverarbeitung mit Logik

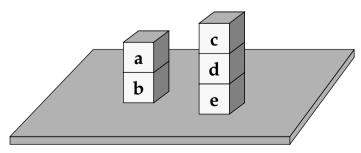


Abb. 5.1: Die Klötzchenwelt

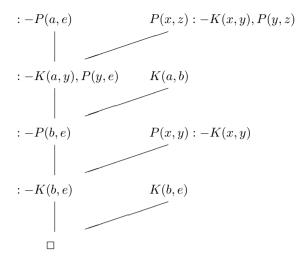


Abb. 5.2: SLD-Resolution

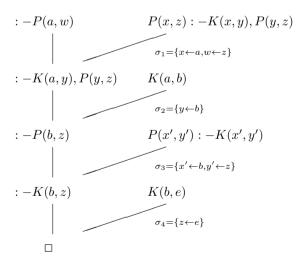


Abb. 5.3: SLD-Resolution mit Antwortsubstitution

6 Regelsysteme

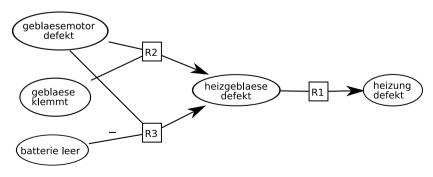
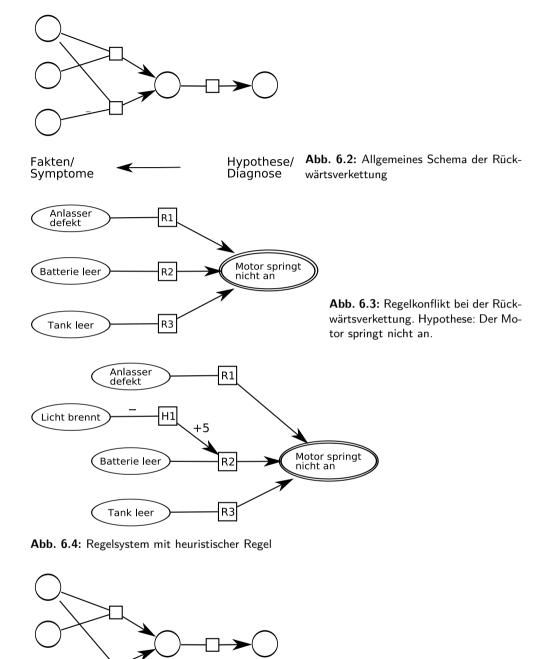



Abb. 6.1: Grafische Darstellung eines Regelsystems

20 6 Regelsysteme

Hypothese/ Diagnose

Fakten/ Symptome Abb. 6.5: Allgemeines Schema der Vor-

wärtsverkettung

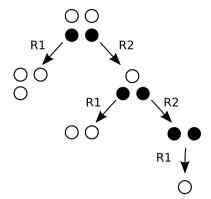
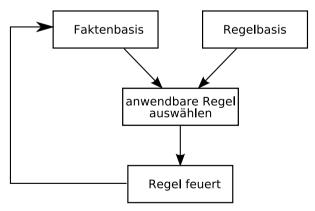



Abb. 6.6: Verschiedene Möglichkeiten beim Chipsspiel

Abb. 6.7: Einfaches Schema der Vorwärtsverkettung

22 6 Regelsysteme

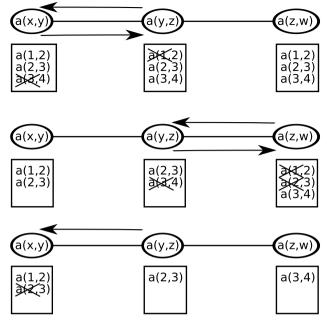


Abb. 6.8: Verlauf der Constraintpropagierung bei der Bildung der Konfliktmenge

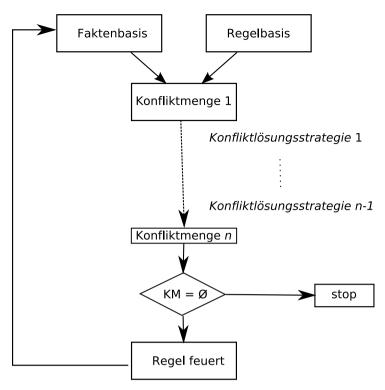


Abb. 6.9: Struktur eines Vorwärtsinterpreters mit Konfliktlösung

7 Unvollständiges Wissen

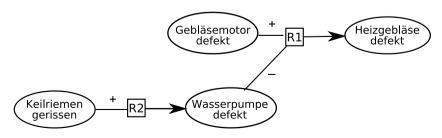


Abb. 7.1: Revision von Schlussfolgerungen

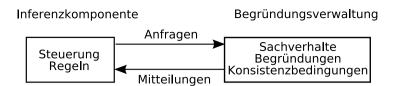
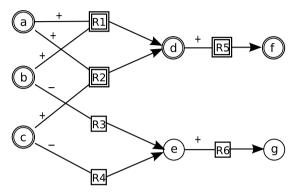
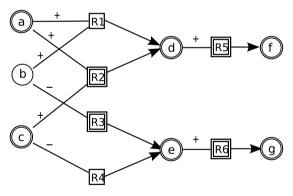
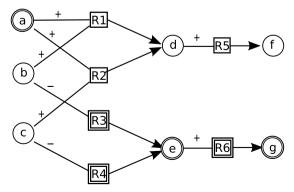


Abb. 7.2: Aufgabenverteilung zwischen Inferenzkomponente und Begründungsverwaltung

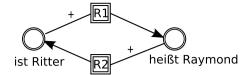

Abb. 7.3: Regelsystem zu Beispiel 7.1

Abb. 7.4: Regelsystem zu Beispiel 7.1 nach Zurückziehen des Faktums b

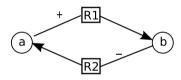

Abb. 7.5: Regelsystem zu Beispiel 7.1 nach Zurückziehen des Faktums c

Abb. 7.6: Rechtfertigungsnetz mit zirkulärer Rechtfertigung

Abb. 7.7: Rechtfertigungsnetz zu Beispiel 7.2 mit zwei konsistenten Markierungen (Gerader Zyklus)

Abb. 7.8: Rechtfertigungsnetz zu Beispiel 7.2 ohne konsistente Markierungen (Ungerader Zyklus)

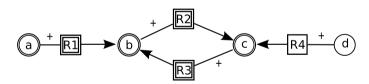
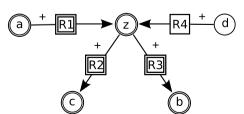
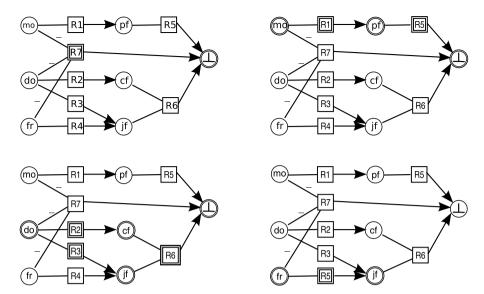
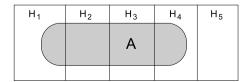
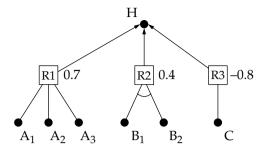



Abb. 7.9: Rechtfertigungsnetz zu Beispiel 7.3

Abb. 7.10: Transformiertes Rechtfertigungsnetz zu Beispiel 7.3


Abb. 7.11: Regelnetz zum Terminplanungsproblem

8 Unsicheres Wissen

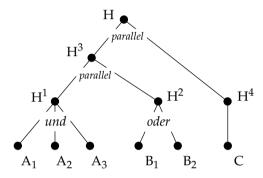


Abb. 8.1: Die Regel der totalen Wahrscheinlichkeit

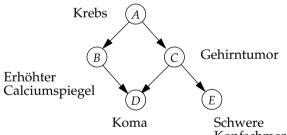

30 8 Unsicheres Wissen

Abb. 8.2: Grafische Darstellung der Regelbasis

Abb. 8.3: Der sich aus der Regelbasis ergebende Und-Oder-Kombinationsgraph.

Schwere Abb. 8.4: Das Bayessche Netz zu Kopfschmerzen Beispiel 8.12

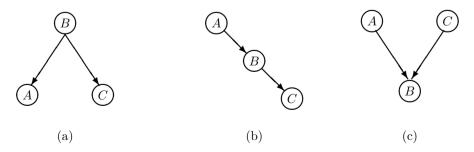


Abb. 8.5: Divergierend (a), kaskadierend (b) und konvergierend (c) gerichtete Kanten

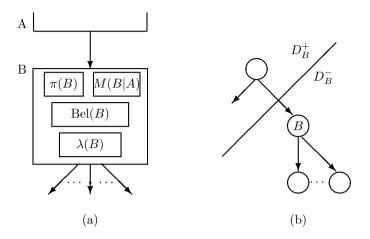


Abb. 8.6: Lokale Daten (a) und Datenpartitionierung (b) in einem Bayesschen Netz

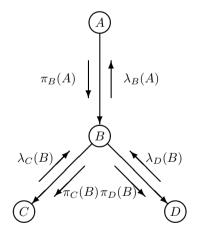


Abb. 8.7: Datenfluss in einem Bayesschen Netz

32 8 Unsicheres Wissen

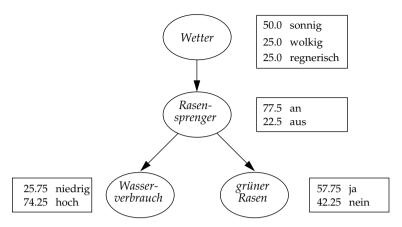


Abb. 8.8: Kleingärtner: Bewertung der Ereignisse nach der Initialisierung

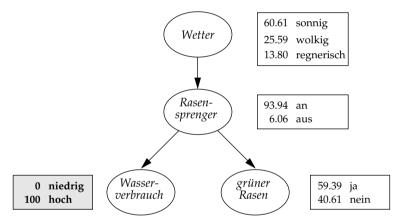


Abb. 8.9: Kleingärtner: Bewertung der Ereignisse nach einer konkreten Beobachtung

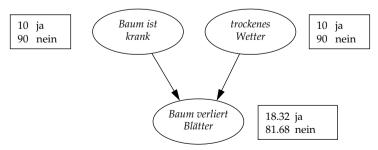


Abb. 8.10: Krankheitsbild von Apfelbäumen – Zustand nach Initialisierung

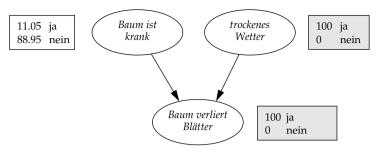


Abb. 8.11: Krankheitsbild von Apfelbäumen - Endzustand

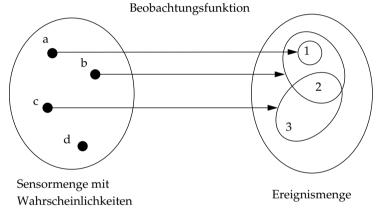
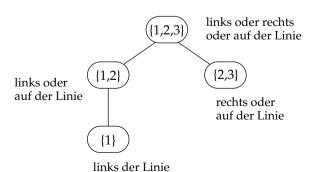



Abb. 8.12: Sensor- und Ereignismenge in Dempsters Modell

Abb. 8.13: Hierarchische Anordnung der interessanten Ereignisse

9 Vages Wissen

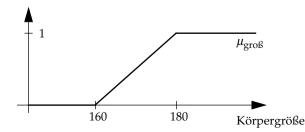
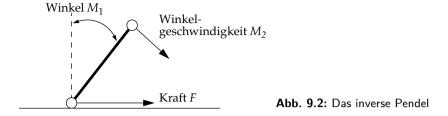



Abb. 9.1: Die Zugehörigkeitsfunktion Körpergröße des Begriffs "groß"

36 9 Vages Wissen

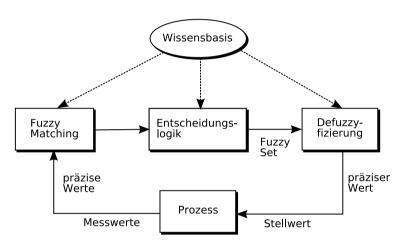


Abb. 9.3: Architektur eines Fuzzy-Reglers

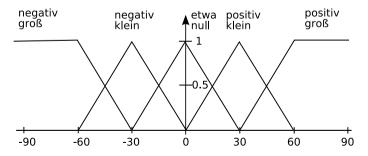


Abb. 9.4: Die Fuzzy-Mengen für das Beispiel des inversen Pendels

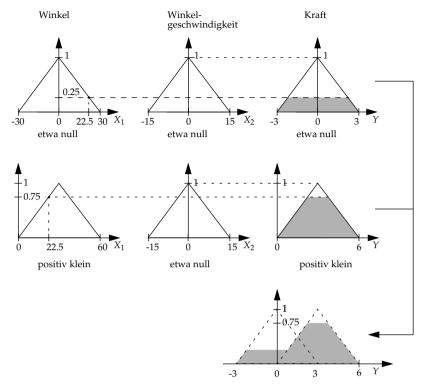


Abb. 9.5: Berechnungen des Fuzzy-Reglers für das Beispiel des inversen Pendels

10 Künstliche neuronale Netze

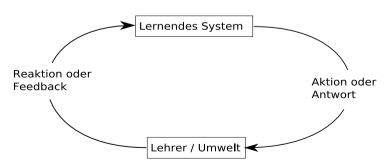


Abb. 10.1: Lernzyklus mit Feedback

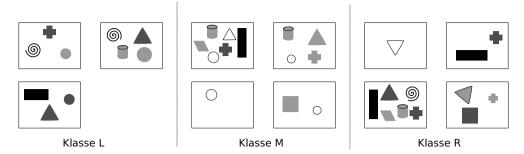


Abb. 10.2: Die drei gegebenen Bildklassen L, M und R

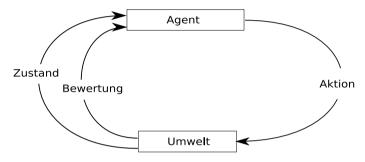
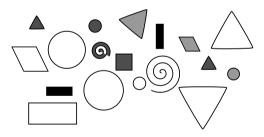



Abb. 10.3: Agent und Umwelt beim bestärkenden Lernen, nach (Sutton & Barto 98)

Abb. 10.4: Unüberwachtes Lernen: Ähnliche Symbole sind zu gruppieren.

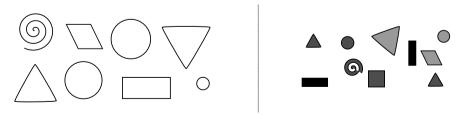


Abb. 10.5: Unüberwachtes Lernen – eine Lösung für Beispiel 10.4

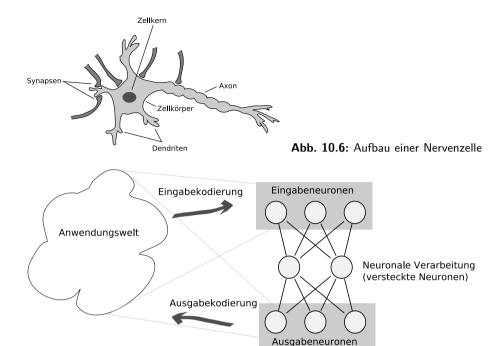


Abb. 10.7: Neuronen im Kontakt zur Umwelt, nach (Kratzer 90)

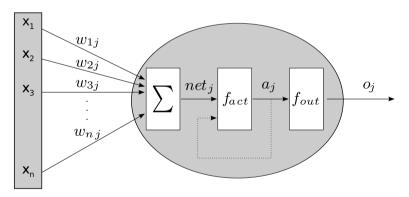


Abb. 10.8: Neuronenmodell: Neuron j

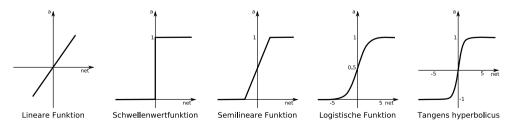
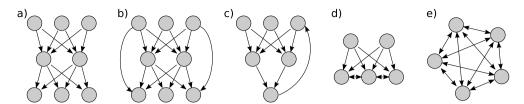



Abb. 10.9: Aktivierungsfunktionen

Abb. 10.10: Netztopologien: a) vorwärts verkettet b) mit Abkürzungen c) mit Rückkopplungen d) mit lateralen Verbindungen e) voll vernetzt

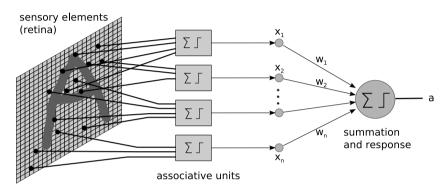


Abb. 10.11: Das Perzeptron, vereinfachte Darstellung

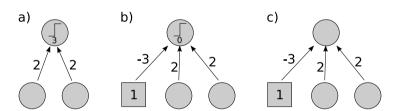
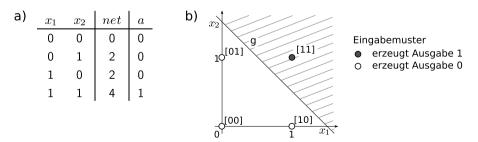



Abb. 10.12: Äquivalente Darstellungen eines UND-Perzeptrons

Abb. 10.13: UND-Perzeptron aus Abb. 10.12 a) Wahrheitstabelle b) Trenngerade im Eingaberaum

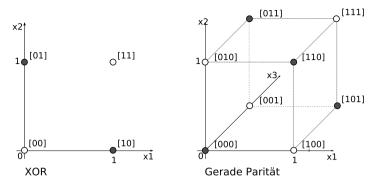


Abb. 10.14: Paritätsprädikate, z. B. XOR, sind nicht linear separierbar.

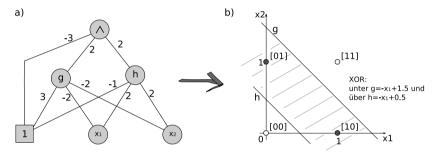


Abb. 10.15: a) XOR aus drei Perzeptrons b) Zugehörige Menge der 1-Punkte

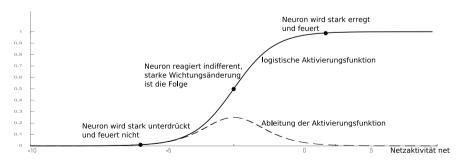


Abb. 10.16: Logistische Funktion und Ableitung – Lernfreudigkeit der Neuronen

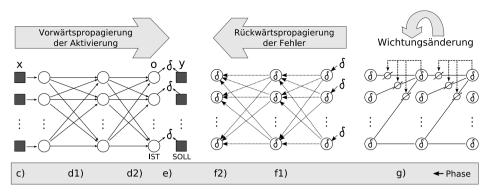
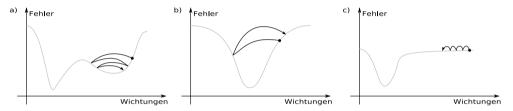



Abb. 10.17: Backpropagation-Lernalgorithmus, Phasen entsprechend Algorithmus im Kasten

Abb. 10.18: Probleme des Gradientenabstiegs: a) gefangen im lokalen Minimum b) zu hohe Lernrate c) flaches Plateau

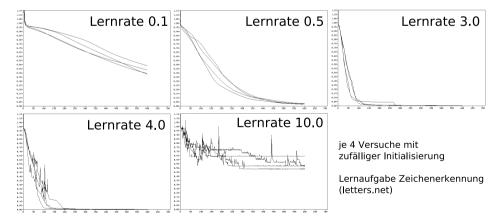


Abb. 10.19: Einfluss der Lernrate auf den Verlauf des Trainingsfehlers

Abb. 10.20: Abhängigkeit des erreichbaren Fehlers von der Netzgröße

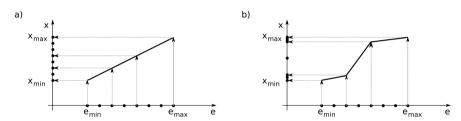


Abb. 10.21: Transformation numerischer Attribute a) linear b) stückweise linear

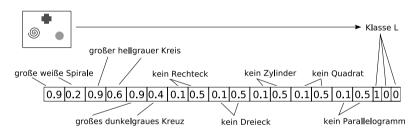


Abb. 10.22: Kodierung des ersten Bildes aus Abb. 10.2 als Trainingsvektor

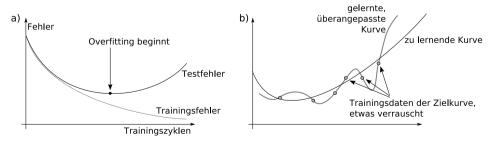
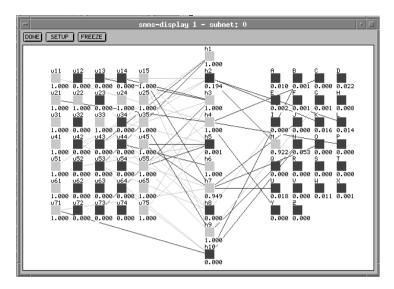



Abb. 10.23: Overfitting a) Zeitpunkt des Auftretens b) überangepasstes Lernergebnis

Legende Wichtungen:

> 5 : hellgrau < -5 : dunkelgrau andere : nicht dargestellt

Abb. 10.24: letters - ein trainiertes Beispiel-Netz aus SNNS

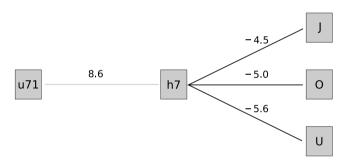
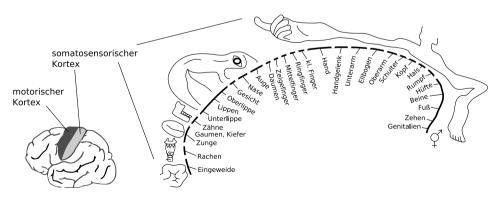
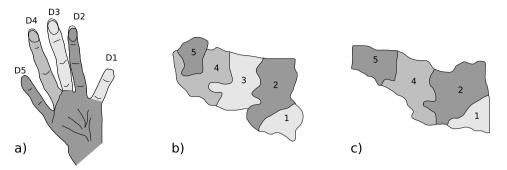




Abb. 10.25: Eine auffällige Wichtungskonstellation im trainierten Netz

Abb. 10.26: Penfield-Männchen: Kartografische Repräsentation der somatosensorischen Felder im Kortex des Menschen, (Penfield & Rasmussen 50) nach (Reichert 00)

Abb. 10.27: Dynamik der rezeptorischen Felder a) Schema einer Affenhand b) Repräsentation der Hand im Kortex c) 2 Monate nach Amputation von Finger D3, (Merzenich et al. 84) nach (Reichert 00)

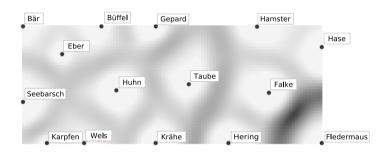
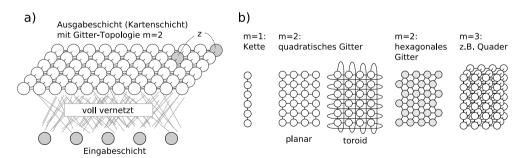
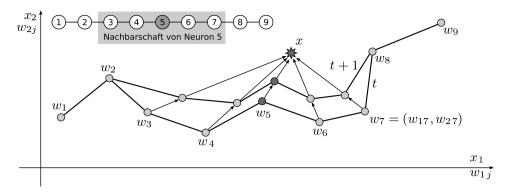
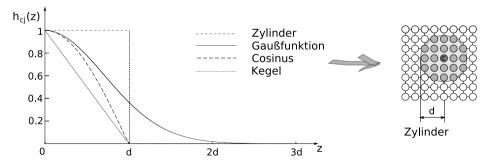
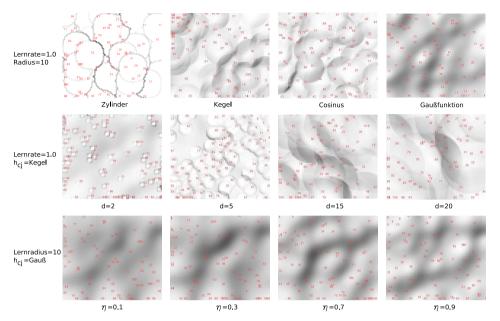
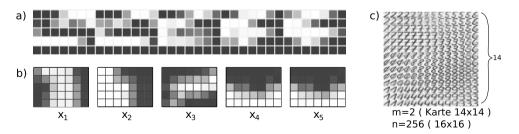




Abb. 10.28: Verteilung der Erregungszentren in einer mit Tierarten trainierten selbstorganisierenden Karte

Abb. 10.29: Aufbau eines Kohonennetzes a) Struktur aus zwei Schichten b) Beispiele für Topologien der Ausgabeschicht

Abb. 10.30: Lernvorgang in einer SOM mit n=2 und m=1, Visualisierungsart *Karte im Eingaberaum*, nach (Zell 03)

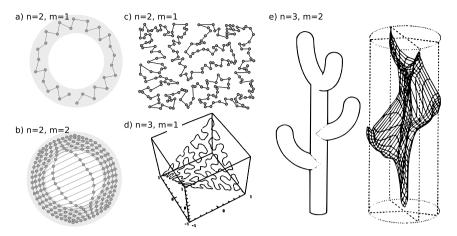

Abb. 10.31: Nachbarschaftsfunktionen

Abb. 10.32: Wirkung strategischer und numerischer Parameter, Visualisierungsart U-Matrix, Programm SOMARFF

Abb. 10.33: Musterunabhängige Visualisierungen einer 5x7-Karte mit 5 Eingabeneuronen a) Wichtungsmatrix b) Komponentenmatrizen der einzelnen Eingabeneuronen c) Wichtungsvektormatrix einer SOM zur Zeichenerkennung

Abb. 10.34: Karte im Eingaberaum für verschiedene Dimensionen a) und b) Eingabemuster nur in grauen Bereichen, Applet DemoGNG c) Lösung eines TSPs mit 230 Städten d) Kette mit drei Eingabeneuronen (Ritter 03) e) Kaktus aus (Kohonen 01): links die 3-D-Verteilung der Eingabemuster, rechts die erzeugte 2-D-Karte

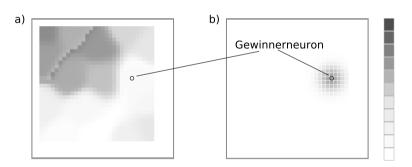
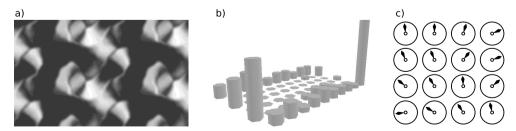
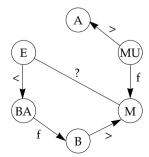
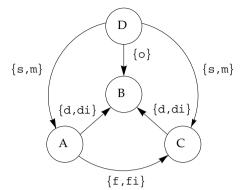




Abb. 10.35: Musterabhängige Visualisierungen a) Distanzmatrix b) Gewinnermatrix


Abb. 10.36: Weitere SOM-Visualisierungen a) P-Matrix, Programm ESOM Analyzer b) Gewinnhistogramm, Programm NENET c) Wichtungsvektormatrix, nach (Kohonen 01)

11 Zeitliches Wissen

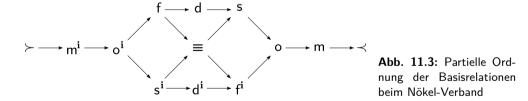


Abb. 11.1: Das temporale Constraintnetz für das Hausbau-Beispiel 11.2

52 11 Zeitliches Wissen

Abb. 11.2: Ein Beispiel zur Unvollständigkeit der Pfadkonsistenzmethode

12 Wissen über Situationen, Aktionen und Pläne

Abb. 12.1: Zwei mögliche Situationen in der Klötzchenwelt

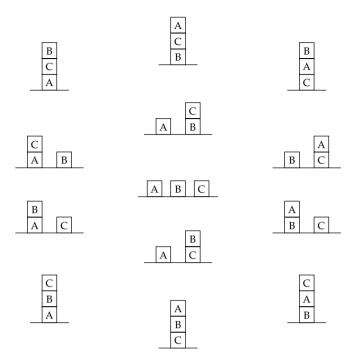


Abb. 12.2: Der vollständige Zustandsraum der aus drei Klötzchen bestehenden Klötzchenwelt

		С	В
В		В	A
A	C	A	С

Abb. 12.3: In diesen drei Situationen gilt $\operatorname{On}(B,A)$.

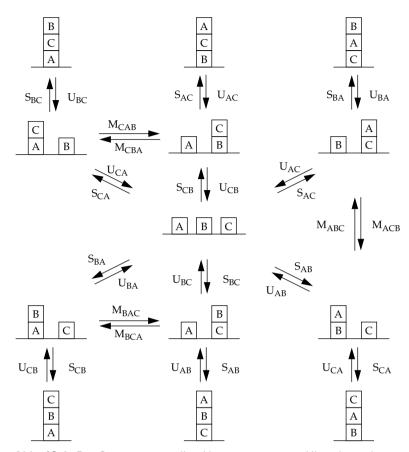


Abb. 12.4: Die Gesamtmenge aller Aktionen in unserer Klötzchenwelt

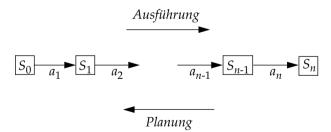


Abb. 12.5: Ausführen und Planen einer Aktionssequenz

Abb. 12.6: Von S_0 nach G als Aufgabe für den STRIPS-Planer

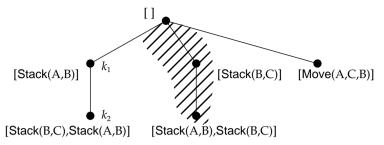


Abb. 12.7: Suchbaum für das Problem aus Abbildung 12.6

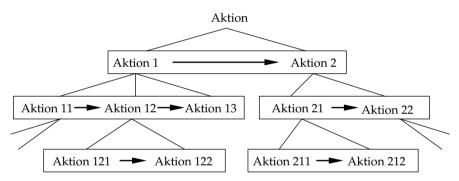


Abb. 12.8: Dekomposition von Aktionssequenzen

Abb. 12.9: Die Sussman-Anomalie

Quellenverzeichnis

- [Frowd & Hancock 07] C. **Frowd** und P. **Hancock**. *Evolving human faces*. In: P. Machado und J. Romero (Hrsg.), Art and Artificial Evolution. 2007. to appear.
- [Greguss 76] F. **Greguss**. Patente der Natur. Unterhaltsames aus der Bionik. Verlag Neues Leben Berlin, 1976.
- [Hornby & Pollack 01] G. S. **Hornby** und J. B. **Pollack**. The Advantages of Generative Grammatical Encodings for Physical Design. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, pp. 600–607. IEEE Press, 2001.
- [Kohonen 01] T. Kohonen. Self-Organizing Maps. Springer, 3. Auflage, 2001.
- [Kratzer 90] K. P. Kratzer. Neuronale Netze. Grundlagen und Anwendungen. Hanser Fachbuch, 2. Auflage, 1990.
- [Merzenich et al. 84] M. M. Merzenich, R. J. Nelson, M. P. Stryker, M. S. Cynader, A. Schoppmann und J. M. Zook. Somatosensory cortical map changes following digit amputation in adult monkeys. The Journal of Comparative Neurology, 224(4):591–605, 1984.
- [Penfield & Rasmussen 50] W. **Penfield** und T. **Rasmussen**. The Cerebral Cortex of Man. A Clinical Study of Localization of Function. New York: Macmillan, 1950.
- [Reichert 00] H. Reichert. Neurobiologie. Stuttgart: Thieme, 2. Auflage, 2000.
- [Ritter 03] H. Ritter. Self-Organizing Feature Maps. In: M. A. Arbib (Hrsg.), The Handbook of Brain Theory and Neural Networks, pp. 1005–1010. Cambridge, Massachusetts: The MIT Press, 2. Auflage, 2003.
- [Sutton & Barto 98] R. S. Sutton und A. G. Barto. Reinforcement Learning I: An Introduction. Cambridge: MIT Press, 1998. http://www.cs.ualberta.ca/~sutton/book/the-book.html, Stand 02/2007.
- [Zell 03] A. Zell. Simulation neuronaler Netze. Oldenbourg Wissenschaftsverlag, 4. Auflage, 2003.